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Fast 2-D ray+Born migration/inversion in complex media

Philippe Thierry∗, Stéphane Operto‡, and Gilles Lambaré∗

ABSTRACT
In this paper, we evaluate the capacity of a fast 2-D

ray+Born migration/inversion algorithm to recover the
true amplitude of the model parameters in 2-D complex
media. The method is based on a quasi-Newtonian lin-
earized inversion of the scattered wavefield. Asymptotic
Green’s functions are computed in a smooth reference
model with a dynamic ray tracing based on the wavefront
construction method. The model is described by velocity
perturbations associated with diffractor points. Both the
first traveltime and the strongest arrivals can be inverted.
The algorithm is implemented with several numerical ap-
proximations such as interpolations and aperture limita-
tion around common midpoints to speed the algorithm.
Both theoritical and numerical aspects of the algorithm
are assessed with three synthetic and real data exam-
ples including the 2-D Marmousi example. Comparison
between logs extracted from the exact Marmousi pertur-

bation model and the computed images shows that the
amplitude of the velocity perturbations are recovered ac-
curately in the regions of the model where the ray field is
single valued. In the presence of caustics, neither the first
traveltime nor the most energetic arrival inversion allow
for a full recovery of the amplitudes although the latter
improves the results. We conclude that all the arrivals
associated with multipathing through transmission caus-
tics must be taken into account if the true amplitude of
the perturbations is to be found. Only 22 minutes of CPU
time is required to migrate the full 2-D Marmousi data
set on a Sun SPARC20 workstation. The amplitude loss in-
duced by the numerical approximations on the first trav-
eltime and the most energetic migrated images are evalu-
ated quantitatively and do not exceed 8% of the energy
of the image computed without numerical approxima-
tion. Computational evaluation shows that extension to a
3-D ray+Born migration/inversion algorithm is realistic.

INTRODUCTION

During the last decades, seismic imaging methods have made
great progress. In pioneer works, Claerbout (1970, 1976) pro-
posed an imaging principle and the concept of wave equation
migration. Other approaches, such as the Kirchhoff integral
method (French, 1975; Schneider, 1978) or the frequency-
wavenumber method (Stolt, 1978), emerged rapidly. All these
methods have been recast in the general framework of lin-
earized seismic inverse theory (Tarantola, 1987), and we can
now refer to migration/inversion methods.

Constant improvements in numerical schemes and in com-
puter power already allow routine applications in 2-D prestack
linearized inversion. The actual challenge is rather in the ex-
tension to three dimensions. Theoretically, extension to three-
dimensions does not exhibit any major difficulty even if it
generally leads to excessive computing time or memory re-
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Océanique de Villefranche sur Mer, UMR Géosciences Azur CNRS, BP48, 06235 Villefranche sur Mer Cedex, France. E-mail: operto@obs-vlfr.fr.
c© 1999 Society of Exploration Geophysicists. All rights reserved.

quirements. At the present time, only kinematic Kirchhoff
3-D prestack depth migration codes are used in the indus-
try. Moreover, the use of 3-D migration is motivated strongly
by 3-D complex model studies. In this context, the limitation
to first-arrival traveltime computed by some Eikonal solver
(Podvin and Lecomte, 1991) in kinematic migration may pro-
vide poor quality results (Geoltrain and Brac, 1993). Thus, al-
ternative approaches allowing both accurate complex media
imaging and CPU efficiency must be investigated (Audebert
et al., 1997).

With this prospect, the goal here is to assess the 3-D ex-
tension of the 2-D ray+Born migration/inversion method with
application to complex media.

CPU efficiency of migration methods depends strongly on
the computation of Green’s functions. In two dimensions, var-
ious approaches have been proposed using finite-difference
solvers of the wave equation (Kolb et al., 1986; Crase et al.,
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1990; Pica et al., 1990) and of the paraxial one-way equation
(Claerbout, 1976), and asymptotic methods such as WKBJ
(Ikelle et al., 1988; Cao et al., 1990) or ray theory (Beydoun and
Mendes, 1989; Lambaré et al., 1992). All these methods may be
extended conceptually to three dimensions, but the computing
time and memory requirements for 3-D applications may be
prohibitive (Aminzadeh et al., 1994).

Among these seismic modeling methods, ray theory ap-
pears to offer a good compromise between precision and com-
putational efficiency. Ray theory has been used for a long
time in seismology (Červený et al., 1977; Aki and Richards,
1980), but the development of ray-tracing codes especially ded-
icated to migration in complex velocity models is rather recent
(Lambaré et al., 1992, 1996; Vinje et al., 1993b; Rekdal and
Biondi, 1994; Lucio et al., 1996).

A significant breakthrough was obtained with the finite-
difference computation of minimum traveltime (Vidale, 1988;
Podvin and Lecomte, 1991). An extremely fast and efficient
algorithm for kinematic Kirchhoff migration can be built on
Noble et al. (1996), but the results are poor when imaging com-
plex structures (Geoltrain and Brac, 1993).

A solution for overcoming this limitation is to appeal to dy-
namic ray tracing, enabling the computation of both traveltime
and amplitude. Several ray-tracing codes dedicated to migra-
tion have been proposed (Lambaré et al., 1992; Vinje et al.,
1993a).

Compared to other methods, the wavefront construction
method (Vinje et al., 1993a) may be more easily extended to
three dimensions (Chilcoat and Hildebrand, 1995; Vinje et al.,
1996; Lucio et al., 1996). Lambaré et al. (1996) and Lucio et al.
(1996) improved this method by introducing a criterion for ray
density ensuring a uniform precision for the ray-field sampling.
These algorithms provide interpolated maps of traveltime, am-
plitude, and angles of rays for all the arrivals in 2-D and 3-D
smooth velocity fields.

In addition to CPU efficiency, ray theory has additional ad-
vantages. The decomposition of Green’s functions in terms of
traveltime, amplitude, and source signature allows a low stor-
age space of Green’s functions and great simplifications in the
migration algorithm.

Approaches for properly taking into account the ampli-
tude information are based on a reformulation of migration in
the frame of asymptotic linearized inversion. Ray+Born and
ray+Kirchhoff forward approximations constitute the bases
of such approaches. In these methods, the model is split into a
diffractor or reflector distribution and a velocity macro model
where ray tracing is performed. The velocity field is supposed
to be known, and only the diffractor/reflector distribution is to
be determined.

The first studies were devoted to the particular case of ho-
mogeneous velocity fields where the relation between pertur-
bation of data and perturbation of model parameter can be
rigorously diagonalized in time-space Fourier domain (Cohen
and Bleistein, 1979).

Generalization of this diagonalization to more general ve-
locity fields is not straighforward and requires additional ap-
proximations. Extensions to the case of a depth-dependent ve-
locity field were first proposed by Clayton and Stolt (1981),
Cohen and Hagin (1985), and Bleistein and Gray (1985), but
the significant breakthrough was performed by Beylkin (1985).
He recognized in the ray+Born operator a generalized Radon

transform (Deans, 1983) and proposed an asymptotic inverse
operator in terms of the inverse generalized Radon transform.
In fact, since the Radon transform can be expressed in terms
of the Fourier transform (Deans, 1983; Chapman, 1985), the
Beylkin approach can be seen as an approximative extension
to general velocity fields of the rigorous diagonalization of the
ray+Born operator.

The work of Beylkin formed the basis of numerous develop-
ments. Kirchhoff migration was reformulated (Bleistein, 1987;
Schleicher et al., 1993; Lumley, 1993) giving quantitative dis-
tributions of reflection coefficients and specular reflection an-
gles. Applications to 2.5-D (Bleistein, 1987) and 3-D migra-
tion/inversion (Cohen et al., 1986; Schleicher et al., 1993) were
proposed, and multiparameter linearized inversion was also
developed (Beylkin and Burridge, 1990).

In parallel to all these studies, a specific effort was devoted
to recasting ray-based migration in the general frame of the
inverse problem theory (Tarantola, 1987). Solving the inverse
problem consists of minimizing a given cost function quantify-
ing the misfit between the observed data and calculated data.
The works of Ikelle (Ikelle et al., 1986, 1988) and Beydoun and
Mendes (1989) are expressions of such efforts.

With the classical `2 norm as a cost function, the solution of
the linearized inverse problem can be expressed explicitly as a
combination of gradient and Hessian terms (Tarantola, 1987).
Except in the case of a depth-dependent velocity model (Ikelle
et al., 1988), the computation of the solution requires the inver-
sion of a huge Hessian matrix, which is essentially band diago-
nal. However, the approximation by its diagonal (Beydoun and
Mendes, 1989; Plessix, 1996) is a rather poor approximation,
and an iterative gradient minimization was proposed.

At this stage, the question was: how can one take advantage
of Beylkin’s approximations within the general frame of in-
verse theory? This step is not straightforward and was achieved
by Jin et al. (1992). They proposed a weighted `2 cost func-
tion which provides asymptotically a diagonal Hessian matrix.
Since approximations were introduced, an iterative (so-called
quasi-Newtonian) minimization was still required but with a
reduced number of iterations. The explicit form of the solution
allowed theoretical studies of resolution (Jin et al., 1992), as
well as discussion of conditioning in the case of multiparam-
eter acoustic and elastic linearized inversion (Jin et al., 1992;
Forgues and Lambaré, 1997). Applications to the 3-D case have
already been proposed (Thierry et al., 1996; Operto et al., 1997;
Sevink and Herman, 1997), and recently the approach was also
extended to linearized inversion for seismic attenuation (Ri-
bodetti et al., 1995).

Our main objective in this paper is to show, using a 2-D
case study (Marmousi example), that the use of a migra-
tion/inversion method that accounts properly for the ampli-
tude of the data improved the quality of the migration in case
of complex media while remaining sufficiently fast to be ex-
tended to three dimensions.

In the first part of this paper, we recall Jin’s approach of seis-
mic 2-D and 2.5-D ray+Born inversion that was implemented
in our algorithm. We define our ray+Born migration/inversion
(also called in the literature “preserved amplitude prestack
migration”) as the result of the first iteration of a single param-
eter ray+Born inversion. We verify on a canonical example the
ability of our approach to recover quantitatively the diffract-
ing model. Then, we address the problem of the numerical
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implementation. We briefly describe the wavefront construc-
tion method used for computing traveltime, amplitude, and
other ray-related parameters throughout target, and the im-
plementation of the numerical approximations to speed the
algorithm.

Finally, the algorithm is tuned on a structurally simple
real data set and then applied to the 2-D complex synthetic
Marmousi model and data set. The capacity of the method
to recover the true amplitude of the perturbations is finally
analysed by comparing the exact perturbation model and the
migrated sections.

THEORETICAL ASPECTS

2-D ray+Born migration/inversion

Ray+Born migration/inversion can be viewed as a preserved
amplitude prestack depth migration based on ray theory,
the Born approximation, and linearized inversion (namely, a
prestack depth migration which accounts for the amplitude of
the data to recover the true amplitude of the model pareme-
ters).

The Born approximation is a linear approximation around
a reference model of the relation connecting the traces to the
model, here described by the square slowness field. This ap-
proximation is relevant when the perturbation of the model re-
quires only small wavelength perturbations. The Born approx-
imation involves the computation of Green’s functions in the
reference model. We get the ray+Born approximation when
such Green’s functions are computed by ray theory. Details
about the derivation of the 2-D and 2.5-D ray+Born approxi-
mation of the scalar wave equation, which we use throughout
the paper, are given in Appendix A.

The 2-D and 2.5-D ray+Born summations [equations (A-7)
and (A-9)] can be discretized. When all ray fields are single val-
ued, we obtain in the frequency domain (ω denotes the angular
frequency) the expression

δGcal(r, ω; s) ≈
∑

x

B(r, ω, s, x) δm(x), (1)

where r and s denote, respectively, the receiver and shot po-
sitions, x the position of the discretized model perturbations,
δGcal the perturbation of the Green’s function, δm the square
slowness perturbation, and B the kernel of the discretized
ray+Born operator, with

B(r, ω, s, x) = 1xA(r, x, s)K(ω) eiωT (r,x,s). (2)

A and T denote the product of the amplitudes and the sum
of the traveltimes associated with the rays s→ x and x→ r, K
the ray+Born signature, and1x the surface of the elementary
pixel in the model for the discretized ray+Born summation
(see Appendix A for more details).

For a given data set and model, the linear relation (1) can be
inverted within the general frame of inverse problem theory
(Tarantola, 1987). Consider the weighted `2 cost function

C[δm] = 1
2

∑
s

∑
r

∑
Ä

Q|δGobs− δGcal|2, (3)

where δGobs is the observed data (data have to be deconvolved
from the source signature and water-bottom reverberations),
s and r denote the shot and receiver numbers, and Ä the dis-

cretized frequencies. Q is a weighting function equivalent to a
covariance matrix in the data space, as introduced in the inverse
problem theory (Tarantola, 1987). We assume the data space
(s, r, ω) to have one dimension more than the model space
(x) (this is the classical situation in standard—multichannel—
seismic surveys), and we consider both positive and negative
values of the angular frequency ω.

The expression of the solution δm minimizing the cost func-
tion is well known:

δm= (B†QB)−1B†Q δGobs, (4)

where † denotes a transposed conjugated matrix. The vector,
−B†Q δGobs, is the gradient of the cost function and the square
symetric matrix, B†QB, is the Hessian

B†QB(x, x0) =
∑

s

∑
r

∑
Ä

B†(r, ω, s, x)Q B(r, ω, s, x0)

(5)

=
∑

s

∑
r

∑
Ä

D(r, x, x0, s, ω) e−iω1T (r,x,x0,s),

(6)

where{
D(r, x, x0, s, ω) = (1x)2|K(ω)|2A(r, x, s)A(r, x0, s)

1T (r, x, x0, s) = T (r, x, s)− T (r, x0, s)
.

(7)

In the context of seismic inversion, it is generally impossible
to invert numerically this huge matrix. One has to resort to
iterative gradient minimization, and any improvement in the
estimation of the inverse of the Hessian should improve con-
vergence (Tarantola, 1984; Beydoun and Mendes, 1989; Plessix,
1996).

Notice that the summation (6) involves a kernel expressed in
terms of amplitude D and phase 1T . It appears analogous to
the integral expression of the Dirac function in two dimensions,

δ(x− x0) = 1
(2π)2

∫
R2

∫
dk e−i k·(x−x0). (8)

To improve the minimization algorithm and to take advan-
tage of explicit expressions of the Hessian, Jin et al. (1992) took
advantage of the analogy between Hessian and Dirac expres-
sions [equations (6) and (8)] and proposed to chooseQ in such
a way that the Hessian matrix is approximately diagonalized.

Following Jin et al. (1992), we choose Q as a local weight
depending on the imaged point x0 in the model

Q(s, r, ω, x0) = 1s1r1ω
(2π)2D(r, x0, x0, s, ω)

∣∣∣∣ ∂(k,2)
∂(s, r, ω)

∣∣∣∣, (9)

where 2 is the angle between vector pr and ps (Figure 1), k =
ω(pr + ps),1s and1r denote the shot and receiver step along
the line, and1ω is the sampling step for the angular frequency.
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For the Hessian operator we obtain (see Appendix B for the
demonstration)

B†QB(x, x0) ≈
∫

d2
1

(2π)2

∫∫
dk e−i k·(x−x0)

≈ [2]max
min δ(x− x0). (10)

Here, [2]max
min denotes the gap between the maximum and

minimum value of 2, obtained by considering the set of rays
s→ x0 and r→ x0 for all the traces. The Hessian matrix has
now been approximately diagonalized and can thus be inverted
easily.

With the weighting functionQ, expression (4) of the solution
becomes

δm(x0) ≈ 1
[2]max

min

∑
s

∑
r

E(r, x0, s)
1

2π

×
∫ +∞
−∞

dωZ(ω) δGobs(r, ω, s) e−iωT (r,x0,s)

(11)

≈ 1
[2]max

min

∑
s

∑
r

E(r, x0, s)

× [Z(t) ∗ δGobs(r, t, s)](T (r, x0, s)), (12)

where ∗ denotes the time convolution and
E(r, x0, s) = 1

2π
|q|21s1r
A(r, x0, s)

∣∣∣∣∂ (8s)
∂(s)

∣∣∣∣∣∣∣∣∂(8r)
∂(r)

∣∣∣∣
Z(ω) = |ω|(K(ω))−1

, (13)

where |q| denotes the norm of vector q, and 8s and 8r are,
respectively, the angles associated with the slowness vectors of
the rays s→ x and r→ x in x (Figure 1). Expressions ofA and
K in two dimensions and two-and-a-half dimensions are given

FIG. 1. Ray+Born approximation. Vector q is defined as
the sum of the slowness vectors pr =∇x0 T(x0, r) and ps=
∇x0 T(x0, s). Angle 2 is the angle between vector pr and ps.
Angles 8s and 8r are, respectively, the angles associated with
the slowness vectors ps and pr . Angles φs and φr are the takeoff
angles at the source and receiver, respectively.

by equations (A-8) and (A-10). For Z , we get

Z2-D(t) = H[δ(t)] Z2.5-D(t) = H
[

H(t)√
tπ

]
= H(−t)√−tπ

,

(14)

whereH denotes the Hilbert transformation and H the Heav-
iside function. To deduce expression (13), we used (see Ap-
pendix C for a proof)∣∣∣∣ ∂(k,2)

∂(s, r, ω)

∣∣∣∣ = |ω||q|2∣∣∣∣∂(8s)
∂(s)

∣∣∣∣∣∣∣∣∂(8r)
∂(r)

∣∣∣∣. (15)

The computation of the Jacobians |∂(8s)/∂(s)| and
|∂(8r)/∂(r)| can be done by paraxial ray tracing (Farra and
Madariaga, 1987).

Although Q was introduced merely to obtain mathematical
simplifications, it retains a clear physical meaning: Q corrects
for amplitude decay, differential two-way isochron spreading,
and Born’s operator signature. The basic philosophy in Jin’s ap-
proach can be summarized as: when no physical reason favors a
particular cost function in an inverse problem, use the one that
leads to the simplest solution. In the original works of Jin et al.
(1992), Lambaré et al. (1992), Forgues and Lambaré (1997), or
Sevink and Herman (1997), the numerical ray+Born schemes
were iterative with residual computations. In the present study,
the final images are the first iteration results, but we will see
with the following canonical example that the limitation to a
single iteration does not dramatically affect the resolution of
the method.

The main differences between the ray+Born migration/
inversion (12) and a Kirchhoff-preserved amplitude migra-
tion (Bleistein, 1987; Beydoun and Jin, 1994) are the weights
and the filters applied to the data and, thus, the nature of
the output. Whereas Kirchhoff-preserved amplitude migration
returns (for each common-shot or common-offset gather) a
migrated image of the specular reflectivity of continuous inter-
faces, the ray+Born migration/inversion returns a single mi-
grated image of the perturbation of model parameters.

A canonical example

The model consists of a homogeneous medium (constant ve-
locity of 3500 m/s) within which is buried a 100-m-thick homo-
geneous layer at 1.5-km depth (constant velocity of 3700 m/s).
The synthetic data set was computed by ray theory taking into
account the 3-D propagation (Figure 2). It consists of 120 shots

FIG. 2. A common shot gather for the canonical example. This
synthetic seismogram was computed by ray theory.
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spaced 25 m apart with 60 receivers per shot spaced 50 m apart.
The first offset was 50 m, the time sampling was 2 ms, and the
source signature was a zero-phase signal with a trapezoidal
spectrum [0, 10, 35, 55] Hz.

A smooth representation of the true model (Figure 3a) was
used for the migration. As suggested by Versteeg (1991), a low-
pass Gaussian filter, [(1/r

√
π) exp(−x2/r 2)] combined with a

coarse B-spline parameterization was used to smooth the ex-
act model (the same parameters will be used later for the Mar-
mousi example). The radius r of the Gaussian filter and the
spacing between spline knots were both 75 m.

After migration, we summed the velocity macro model c0

and the perturbation model δm inferred from the migration
and compared the resulting model with the true model (Fig-
ure 3b). The amplitude and the shape of the 100-m-thick layer
buried in the homogeneous medium are quite well recovered
with a single iteration. Note that the shape of the recovered
model (velocity macro model + perturbation model) exhibits
some ripples on the top and bottom of the layers interpreted as
a Gibbs phenomenon. Second, the average amplitude of the re-
covered model (c0 + δm) slightly exceeds the amplitude of the
true model in the layer. This suggests an overlap of the spatial

FIG. 3. The 2.5-D ray+Born migrated profile for the canoni-
cal example. (a) The velocity macro model is a smooth repre-
sentation of the true model. It was lowpass filtered to 150 m
(see Marmousi example) and projected into a cubic cardinal
B-splines basis with knots spaced by 75 m apart. (b) Compari-
son between the exact model and the model resulting from the
sum of the background model and the inversion result.

bandwidth of the velocity macro model and the perturbation
model. The use of a smoother velocity macro model would have
lead to a closer match of the recovered and the exact model.

IMPLEMENTATION

Ray tracing for imaging

Numerical implementation of the ray+Born migration/
inversion expression (12) requires computation of E and T
by ray tracing in the reference model c0 (x). The difficulties en-
countered when building such an algorithm mainly arise from
the singularities associated with caustics and multiple arrivals,
but also from the necessity to control the ray-field sampling.

Recently proposed by Vinje et al. (1993a), the wavefront
construction method offers an interesting basis. The ray field
associated with the 2-D Green’s functions is divided into ele-
mentary quadrangular cells defined by adjacent rays and suc-
cessive wavefronts. The sampled wavefronts are propagated
along a set of rays by constant traveltime increments. When
the “distance” between two adjacent rays violates some ray
density criterion, a new ray is added on the previous wavefront
by interpolation and propagated along with the old rays. Once
the cells have been constructed, the desired parameters are in-
terpolated on the target from the values at the vertices of the
cells.

The ray density criterion proposed by Vinje et al. (1993a)
used the metric distance between the rays. This criterion leads
to a drastic undersampling in caustic regions. To remedy such
limitations, Lambaré et al. (1996) (in 2-D) and Lucio et al.
(1996) (in 3-D) recast the wavefront construction method in
the general frame of the Hamiltonian formulation of ray theory
and paraxial ray theory (Farra and Madariaga, 1987). Their ap-
proach avoids the problems associated with caustics and multi-
ple arrivals. Indeed, their ray density criterion ensures a “uni-
form” precision for the ray-field sampling along the sampled
wavefronts, even in the case of multiple arrivals or caustics.
Their algorithm appears robust, precise, and CPU efficient.
Compared to those developed by Podvin and Lecomte (1991),
for estimating the first-arrival traveltime with an eikonal solver,
the computing time is ten times longer for a test over a complex
velocity field, but could provide nine ray parameters for all the
arrivals (Lambaré et al., 1996).

In our imaging code, we used the wavefront algorithm devel-
oped by Lambaré et al. (1996). Six parameters are required in
two-and-a-half dimensions: the traveltime T , the amplitude A,
the parameter τ [see equation (A-10)], the slowness vector p,
and the takeoff angle φ (Figure 1).

The wavefront construction method has already been used
intensively for 2-D migration (Moser and Pajchel, 1995; Thierry
and Lambaré, 1995; Ettrich and Gajewski, 1996) and such ap-
plications will certainly develop in the coming years especially
in the 3-D case (Thierry et al., 1996; Operto et al., 1997; Tura
et al., 1997). Interfaces can be incorporated into the wave-
front construction method (Vinje et al., 1993a, 1995; Moser and
Pajchel, 1997), although this strategy yields a very significant
increase in computational cost and algorithmic complexity.

For CPU efficiency, we decided to stick to smooth reference
velocity fields. This is still a highly debated question, but we be-
lieve that, in many cases of practical interest, the introduction
of interfaces in the reference model (“blocky” model), while
inducing a huge computational overload, will not improve the
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imaging results significantly (Versteeg, 1991; Clar et al., 1996;
Mispel and Hanitzsch, 1996). On the contrary, refining the qual-
ity of the smooth model itself and accounting in detail for the
real acquisition geometry can definitely yield appreciable im-
provements.

Practical aspects of the migration/inversion

The CPU efficiency as well as the applicability to reasonably
complex models was an unavoidable prerequisite for the exten-
sion to three dimensions. In this context, we will now focus on
simple numerical approximations that we introduced to speed
the code.

Target interpolation of the migration operator.—The ker-
nel of the migration operator has a classical high-frequency
asymptotic form [equation (12)] with a “rapidly” oscillating
waveform Z ∗ δGobs shifted by “slowly” varying time T and
modulated by a “slowly” varying amplitude E . The calculus of
T , 2, and especially E can be an expensive operation in terms
of computing time if it is done directly at the final sampling
in the target. If these quantities have slow variations over our
target zone, it seems reasonable to calculate them over a coarse
regular target grid and to interpolate them linearly all over the
fine target grid (Figure 4b).

The main advantages are a significant decrease of the re-
quired memory space and a slight decrease of the comput-
ing time required to compute these coarsely sampled Green’s
functions. Typically, the target interpolation of the migration
operator divides the total computing time by a factor of three.

Linear interpolation has the advantage of CPU efficiency,
and it must be clear that higher order interpolations would
improve the accuracy while increasing the computing time.

Surface Interpolation of Green’s functions.—At the surface,
the source or receiver positions are densely sampled. In the
same way as we interpolate the migration operator, we can
interpolate at the surface the maps obtained by ray tracing
(Figure 4a).

Linear interpolation has the great advantage of CPU effi-
ciency, but there are many ways of interpolating the maps for
the ray shooting position. Interpolation essentially depends on
the map sampling and parameterization (for example, Pica,
1997, proposed a reparameterization of traveltime maps in
celerity).

The map sampling may be expressed in terms of regular po-
sitions in the target or in terms of regular offsets with respect to
the ray shooting positions at the surface. This second solution
is interesting because the accuracy of the surface interpolation
depends only on the lateral variations of the velocity macro-
model (it was used, e.g., by Thierry et al., 1996; Operto et al.,
1997). However, it must be clear that at the final step, maps will
have to be sampled regularly in terms of regular and common
positions in the target. Consequently, any other choice for the
sampling will require this final interpolation in the target.

In case of multiple arrivals, linear interpolations of maps ap-
pear inappropriate. If one wants to keep interpolations to main-
tain CPU efficiency (from our point of view, it is unavoidable
in three dimensions), the strategy must be reevaluated. A first
possibility should consist of performing the interpolation for

each branch of the ray field. This was already exploited in two
dimensions for the interpolation in the target (Lambaré et al.,
1992). The extension to interpolation at the surface and more-
over to three dimensions appears difficult, because it imposes
the precise determination of the boundaries of branches that
can be problematic in three dimensions (Bulant, 1996). In fact,
a rigorous approach should involve the interpolation of the ray
field (the cells in the case of wavefront construction) in (x,p)
space, where p = ∇T denotes the slowness vector (Lambaré
et al., 1996). In this space, the ray fields are never folded. To
our knowledge, such approaches have not been developed and
applied to real data. From a very practical point of view, with
this paper we test the linear interpolation of maps at a con-
stant position in the target and for, respectively, the first and
the strongest arrivals in a complex model with multiple arrivals
(Marmousi).

Dynamic storage of Green’s functions.—The classical 2-D
marine acquisition pattern exhibits a strong redundancy of
receiver positions for successive shots. In former 2-D codes

FIG. 4. (a) Surface interpolation of Green’s functions. Rays are
shot from the surface into the target zone for a limited number
of shooting positions. Maps are then linearly interpolated for
intermediate shooting positions. (b) Target interpolation of the
preserved amplitude migration operator. The amplitude E and
time T of the migration operator is calculated over a coarse grid
in the target and then linearly interpolated over a fine target
grid.
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(Lambaré et al., 1992; Forgues and Lambaré, 1997), Green’s
functions were stored on disk because of small available core
memory, and input/output represented a significant part of
the imaging process. Present memory size on standard work-
stations allows the preservation of information on relevant
Green’s functions for successive shots using a specific dynamic
storage. When migrating a shot, the maps associated with all
receivers of the streamer are stored in memory. When the next
shot is migrated, only maps corresponding to the new receiver
positions are computed. They are incorporated into the mem-
ory storage, replacing the maps of the overtaken receiver po-
sitions (Figure 5b). This simple improvement is particularly

FIG. 5. (a) Limitation of the contribution zone of each trace.
Margins are added around the CMP. Typically the total size in
the x-direction is about half the length of the streamer. (b) Dy-
namic storage of Green’s functions. For each shot, maps asso-
ciated with all receivers of the streamer are stored in memory.
For the next shot, only maps corresponding to new receiver
positions are calculated. They are incorporated into storage,
replacing maps of overtaken receiver positions.

interesting in terms of CPU efficiency for the 2-D migration
even if it cannot be extented simply to three dimensions be-
cause of the lateral feathering in the 3-D marine acquisitions
(Thierry et al., 1996).

Limited aperture.—In the case of reasonable lateral varia-
tions in the model, the contribution of each trace to the final
migrated image can be limited to an area around the common
midpoint (CMP) position (Figure 5a). The aperture can be eval-
uated heuristically in view of the complexity of the model, the
frequency content of the source and the offset range.

Rather than having theoretical discussions on the relevance
and tuning of such approximations, we shall discuss them with
the following validation tests. The implementation of the algo-
rithm is summarized on a flow chart (Figure 6).

VALIDATION TESTS

A real marine seismic line: Tuning of the
migration/inversion code

This first example concerns a structurally simple model: a
marine profile provided by Norsk Hydro. It consists of 398
shots spaced 37.5 m apart with 120 receivers per shot spaced
25 m apart. The time sampling is 4 ms for a cutoff frequency of
67 Hz, and each trace contains about 1000 samples for a total
size of about 200 Mbytes. Preprocessing, performed by Norsk
Hydro, consisted of source signature deconvolution and water
bottom reverberations removal. Figure 7 shows the data for
shot 200.

Sixteen rms velocity logs were provided by Norsk Hydro.
They were first interpolated in time using smooth cubic
B-spline knots every 80 ms, and then converted into inter-
val velocity profiles with the Dix formula. Finally, the velocity
macromodel was defined by cubic B-spline profiles with 300-m
steps in the x- and z-directions and with weights simply defined
by undersampling the finely sampled smooth interval velocity
profiles. Moreover, before the final migration, we improved

FIG. 6. Flow chart of the ray+Born migration/inversion algo-
rithm. The main partitions of the algorithm are framed. The
main loops are indicated by italic characters.
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the velocity field slightly by trial-and-error flattening of com-
mon reflection point (CRP) sections (Figure 8). The velocity
macro model does not exhibit strong lateral variations, and no
caustic arose when ray tracing (Figure 9). It is a convenient

FIG. 7. Common shot gather for shot 200. The time sampling
is 4 ms for a highest frequency of 67 Hz. Water bottom re-
verberations were removed, and a spiking deconvolution was
applied.

FIG. 8. Validation of the velocity macro model: CRP panels at
x = 11.4 km and x = 14.1 km.

FIG. 9. Smooth velocity macro model. This velocity field is described by cubic cardinal B-splines (knot points are
300 m apart in both the x- and z-directions) and was derived from standard velocity analysis. A ray-field sampling
by wavefront construction is superimposed.

model for applying our interpolation strategies. The following
tunable parameters are used for the wavefront construction:
1T = 40 ms, d Xmax = 2 m, and d Pmax = 2×10−6 m/s (Lambaré
et al., 1996).

We applied our 2.5-D ray+Born migration/inversion scheme
to the whole data set in the target zone of 7000 × 810 m
(560× 136 points with sampling steps 12.5× 6 m). Tests were
done for evaluating the tunable parameters in the migration
code (sizes of the coarse surface and target grids, and size
of the contribution zone). The aperture was fixed to 1000 m
on each side of the CMP, and we checked the steps of the
coarse surface and target grids considering the misfit with re-
spect to a reference image obtained without approximations.
Four sets of values of the grid steps were tested (Table 1). The
size of the interpolation steps increased with a benefit in com-
puting time and memory requirement and, conversely, with
a decreasing image accuracy [see the final image for the refer-
ence computation without interpolation (Figure 10a), the result
for set (3) (Table 1; Figure 10b), and the residual section (Fig-
ure 10c)]. No gain was applied to the sections that were plotted
with the same clip (about one third of the maximum value of
Figure 10a).

The migrated sections represent the perturbation of velocity
given by the first-order relation δc = −δm c3

0/2 rather than
squared slowness δm. Some spurious events can be seen on
the section (Figure 10a) for x ∈ [8, 9] km. They correspond
to spurious plane waves in some data. Also noticeable is that
the water-bottom multiple has not been eliminated sufficiently
by preprocessing. Note, however, that the purpose of the test
was not to check the absolute quality of imaging but simply to
check the influence of our approximations on the image.

Table 1 summarizes various indicators of the validations
tests. We see that computing time is divided by four while the
memory requirement is divided by 30. On the other hand, the
energy of the misfit grew up to 6.3%. We define the “energy”
of an image as

E =
∑
i, j

(δci j )2. (16)

We used linear interpolations at the surface and in the target.
The interpolation of the traveltimes is important since it may
result in traveltime shifts, which can be seen as velocity macro
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Table 1. Computing performance on a Sun SPARC 20 workstation for various values of the tunable parameters of ray+Born
migration/inversion and for the real marine line. The contribution zone of each trace is fixed to a 1000-m margin on both sides
of the CMP. The reference set consists of a migration/inversion performed without CPU efficient interpolations, and sets (1)–(4)
correspond to increasing interpolations steps at the surface and in the target. Energy of the image is defined by expression (16).

Reference Set (1) Set (2) Set (3) Set (4)

Coarse sampling at surface (m) 25 50 75 100 150
Coarse sampling (targets) (x/z in m) 12.5/6 48/48 72/72 96/96 150/150
Number of ray tracings 716 362 242 182 122
Computing time for ray tracing (s) 923 330 218 160 99
Computing time for data reading (s) 120 120 120 120 120
Total computing time (s) 1800 812 660 555 540
Total memory requirement (Mbytes) 60 22 10 6 3
Emis f i t/Eref (%) 0.0 1.0 1.9 3.3 6.3

FIG. 10. Sections of the velocity perturbation obtained by 2.5-D ray+Born migration/inversion on a real marine
line (see Table 1): (a) without interpolations, (b) with interpolations [parameter set (3), see Table 1], (c) difference
of the sections. The same clip was used for the three sections and was about a third of the maximum amplitude
in the image (a).
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model variations. However, we must admit that our confidence
in the velocity model as well as in the preserved amplitude
quality of the data make us think that a 5% precision in the
energy of the image should be seen as a satisfactory result.
From these considerations, we adopted parameter set (3) as a
reasonable compromise between computing cost and accuracy.

As a final test for checking the influence of the size of the
contribution zone of traces around the CMP, we increased the
margin from 1000 to 1500 m for parameter set (3). The energy
of the difference section was 3.21%.

Marmousi data set: Application to a highly complex data set

In the previous application, our algorithm was tuned in the
case of a real data set with a velocity macro model with gentle
lateral variations. It is now tested in the context of a highly com-
plex model. For ray-based migration, the concept of complex
models is related to the existence of triplications when tracing
rays in the velocity macro model.

Our ray+Born migration/inversion formula was derived
considering a single arrival. Even if recent theoretical works
(ten Kroode et al., 1994) has shown that the formula could be
generalized to the case of multivalued ray fields, our numer-
ical scheme is definitely based on the use of a single arrival.
In this example, for complex media we evaluate both the effi-
ciency of ray+Born migration/inversion using the first or the
strongest arrivals and the influence of the numerical approxi-
mations (mainly, the interpolation scheme) on the amplitude
of the perturbations.

We used the synthetic Marmousi model and data set
(Versteeg and Grau, 1991). The model consists of a 2-D ve-
locity/density grid of dimensions 751× 2301 with a mesh spac-
ing of 4 m (9200 m long and 3000 m deep) (Figure 11a shows
the velocity grid). The synthetic data were computed by finite
differences of the acoustic equation for a standard marine ac-
quisition. There are 240 shots and 96 receivers per shot. The
spacing beetween the shots and between the receivers is 25 m,
and the first offset is 200 m. The shots are at 8 m depth and the
receivers at 12 m. The time sampling is 4 ms.

Standard preserved amplitude preprocessing was applied to
the data. First, a deterministic zero-phase deconvolution was
applied. The far-field signature was estimated from the source
given in Bourgeois et al. (1991) and convolved by the ghost
signature. The data were muted, and finally a predictive de-
convolution was applied to remove the water-bottom multi-
ples (minimum prediction lag 40 ms; maximum prediction lag
190 ms; percent of prewhitening 10; window for autocorrela-
tion [0.0, 2.9] s).

For the velocity macro model, following Versteeg (1991), we
used a smooth representation (Figure 11b) of the true veloc-
ity model (Figure 11a). Smoothing was applied to the slow-
ness field combining a Gaussian filter and a coarse B-spline
parameterization. We filtered out the structures of spatial di-
mensions lower than 150 m with a Gaussian filter given by
(1/r
√
π) exp(−x2/r 2) with r = 76 m. Finally, the smooth model

was projected onto a cubic cardinal B-spline basis with nodes
76 m apart. The parameters for wavefront construction were
1T = 10.0 ms, d Xmax = 2.0 m, and d Pmax = 2 × 10−6 m/s.
The depth of the ray shooting positions was fixed at 10 m (i.e., a
mean value between the shots and receivers depths). Multiple
arrivals arise when ray tracing (Figure 11c). Upgoing rays were
eliminated systematically.

2-D ray+Born migration/inversion with the first arrival.—
The Marmousi model is an acoustic model parameterized
both by velocity and density. Our inverse formula required
a slight adaptation. It is well known that, at near offsets, reflec-
tion/diffraction is essentially sensitive to the impedance con-
trast, I = ρc. In this case, the ray+Born approximation [equa-
tion (A-7)] must be modified by replacing the 2-D amplitude
of the Green function, A2D(x, s) [equation (A-4)], by the am-
plitude

A2D
acous.(x, s) =

√
ρ0(s)ρ0(x)A2D(x, s), (17)

and the perturbation of model, δm(x), by

δm(x) = −2
ρ2

0 (x)c3
0(x)

δ I (x). (18)

The inversion formula for the perturbation of impedance can
be derived from formula (12) simply by taking into account
equations (17) and (18).

For the Marmousi data set, the 2-D migration formula was
used. The Hilbert transform was first applied to the data set,
and only the first arrival was stored while ray tracing. For migra-
tion, we took parameter set (3) of Table 1: the coarse sampling
for ray tracing at the surface was 100 m, as well as the x and
z coarse samplings in the target; the summation aperture was
restricted to 2000 m around the CMP. The wider summation
zone (in the former example, we took only 1000 m) was moti-
vated by the complexity of the Marmousi model. The migrated
profile ranges from 2000 to 9000 m in the x-direction and from
100 to 2800 m in the z-direction with fine sampling steps of 25 m
and 6.25 m, respectively (281× 449 points). The total comput-
ing time was 22 minutes on a Sun SPARC20 workstation with
7.5 minutes for the 90 ray tracings. To favor the amplitude dis-
play, we first plotted the migrated section (reconstructed δ I /I0

field) with a color scale and without any gain correction (Fig-
ure 12).

The migrated section can be compared with the exact rela-
tive impedance perturbation section (Figure 13) plotted with
the same color scale. To take the limited bandwidth of the
source into account, the exact depth sections were converted
into time sections, band-pass filtered with a trapezoidal filter
([5, 10, 35, 55] Hz), and converted back into depth sections.
Qualitatively, the distribution of amplitudes of our image fits
quite well with that of the exact perturbation model except
in the complex deep zone (the hydrocarbon trap). Figure 14
shows the migrated section with a wiggle display and a low
clip (0.05) (for comparison, the color scale used on Figures 12
and 13 for plotting the relative impedance perturbation δ I /I0

ranged from−0.48 to 0.48) to enhance the impedance contrast
in the deep part of the model. Within the zone of the hydrocar-
bon trap, the amplitudes are strongly underestimated, but the
shape of the trap is slightly visible among the noise.

A closer look at the amplitude and waveform match is pro-
vided by the direct comparison of three 1-D sections at posi-
tions 3700, 6200 (through the hydrocarbon trap), and 8000 m
(see Figure 15) extracted from the first-arrival migrated sec-
tion (Figure 12) and the exact perturbation model (Figure 13).
It confirms the good match between the exact and computed
sections except within the zone of the hydrocarbon trap. Con-
cerning the resolution of first-arrival migration, our results are
in full agreement with former studies on the Marmousi data
set (Geoltrain and Brac, 1993; Ettrich and Gajewski, 1996). As
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stated in Ettrich and Gajewski (1996), the amplitude informa-
tion is not sufficient for improving the structural resolution of
the first-arrival migration in the complex area.

Sensitivity of first-arrival migration/inversion to the inter-
polations.—The previous migrated sections were generated us-
ing our CPU-efficient interpolations (surface and target inter-
polations). To evaluate the effects of these approximations on
the image, we generate a first arrival migrated section with-
out interpolation (Figure 16). The differences between the
first arrival migrated sections with and without interpolation

a)

b)

c)

FIG. 11. (a) The velocity grid defined in the Marmousi experience. (b) The smooth velocity macro model. (c) A
computed ray field superimposed to the smooth velocity macro model. Note the presence of multivalued arrivals
at short offsets in the region of the hydrocarbon trap (x ∈ [6.0, 7.5] km and z ∈ [2.4, 2.6] km).

are distributed uniformly all over the section (Figure 17). The
energy of the residual section is 4.17% of the energy of the
migrated section obtained without interpolation. Given the
interpolation-related parameters, the sensitivity of image to
the interpolations depends on both the spectral content of
data and the complexity of the model. With respect to the for-
mer example of the real marine seismic line, the cut-off fre-
quency is lower in the Marmousi data set (55 Hz compared to
67 Hz), but the Marmousi model is much more complex, and
the interpolations finally result in slightly stronger degradation
of the image (which however remains rather reasonable).
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2-D ray+Born migration/inversion with the strongest
arrival.—Several authors have mentioned that secondary
strong-amplitude arrivals should be used in the migration (Ge-
oltrain and Brac, 1993; Ettrich and Gajewski, 1996; Nichols,
1996; Audebert et al., 1997). To account for these later ar-
rivals, we now investigate the extension of our algorithms to
the strongest arrival, which is known to provide much more
irregular maps for amplitude, traveltime, etc. (Lambaré et al.,
1996).

FIG. 12. First arrival migrated section of the Marmousi data set. The relative impedance perturbation δ I /I0 is
plotted with the same color scale as that used for the exact model (Figure 13).

FIG. 13. Exact relative impedance perturbation δ I /I0 profile. To fit with the wavelengths of the source signa-
ture, the exact depth sections were converted into time sections, band-pass filtered with a trapezoidal filter
([5, 10, 35, 55] Hz), and converted back into depth sections.

FIG. 14. First arrival migrated section of the Marmousi data set (relative impedance perturbation δ I /I0). Note
that the top of the hydrocarbon trap is slightly visible among the noise.

The use of the strongest arrival only implies minor adap-
tations in the algorithm. The main modification is associated
with the requirement of the KMAH index [equation (A-2)].
The real signal δGobs in equation (11) is replaced by the analyt-
ical signal

Real[(δGobs+ iH(δGobs))(i )α], (19)

where H denotes the Hilbert transform, and α the sum of
the KMAH index for the rays connecting the source and the
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receiver to the diffracting point. The computing time is
equivalent to the one obtained with the first-arrival migra-
tion/inversion. The image obtained with the strongest arrival is
shown on Figures 18 and 19 with the same color scale and the
same clip the ones used for the first arrival (Figures 12 and 14,
respectively).

FIG. 15. Comparison of three δ I /I0 1-D sections extracted from the exact section (Figure 13) and from the first arrival migrated
section (Figure 12).

FIG. 16. First arrival migrated section of Marmousi data set (relative impedance perturbation, δ I /I0). With respect
to Figure 14, no CPU-efficient interpolations were used in the target or at the surface. The clip was fixed to 0.05
(about a tenth of the maximum value).

At a quick glance, the strongest arrival migrated section
still exhibits strongly underestimated amplitudes within the
hydrocarbon trap zone when compared to the exact section
(Figure 13). Several reasons could be proposed for such a fail-
ure. The limitation to a single arrival (even if it is the strongest!)
is not sufficient in this complex model for focusing the whole
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energy of the data. Moreover, the singularities predicted by
asymptotic ray theory in the presence of caustics affect the
quality of the image. The effects of these singularities on the im-
age are identified clearly by a bright spot at x = 5000 m and z=
1000 m on the strongest arrival migrated section (Figure 19).

However, we must also recognize that when compared to the
first arrival migrated section (Figure 12), there is an obvious

FIG. 17. Residual section between the first arrival migrated sections of Marmousi data set computed with and
without the CPU-efficient interpolations (Figures 14 and 16, respectively). The clip was fixed to 0.05 (about a
tenth of the maximum value).

FIG. 18. Strongest arrival migrated section of Marmousi data set (relative impedance perturbation δ I /I0). Com-
pare with the exact section on Figure 13 and with the first arrival migrated section on Figure 12.

FIG. 19. Strongest arrival migrated section of Marmousi data set (relative impedance perturbation δ I /I0). The
hydrocarbon trap appears clearly when compared to the first arrival migrated section (Figure 14).

improvement of the image within the zone of the hydrocarbon
trap. This improvement is more evident on the wiggle display
shown on Figure 19 and plotted with the same clip as the one
on Figure 14. This result confirms those obtained by Ettrich
and Gajewski (1996), who concluded that there is an advan-
tage in migrating with the strongest arrival with respect to the
first arrival (see on Figure 20 the residual section between the
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strongest and the first arrival sections plotted with the same
0.05 clip, about a tenth of the maximum value). As expected,
the images of Figures 12 and 18 essentially differ in the deep
part of the image. Indeed, caustics develop in the shallow part
of the model only at significant offsets and thus do not con-
tribute significantly to the image.

The improvement of quantitative imaging near the hydro-
carbon trap is still more obvious when comparing (Figure 21)
the deepest part of the 1-D sections at 6200 m extracted
from the true model (Figure 13), the first arrival (Figure 12),
and the strongest arrival sections (Figure 18). The amplitudes
are higher on the strongest arrival section than on the first
arrival section. This suggests that the strongest arrival covers
the specular reflections better (i.e., the reflections which focus
more energy on the migrated section) than the first arrival.

Sensitivity of the strongest arrival migration/inversion to the
interpolations.—The strongest arrival migrated section com-
puted without interpolation is shown on Figure 22. In fact, the
interpolations do not affect the image dramatically (compare
Figures 19 and 22), but we see that the residuals are higher
than those obtained when migrating the first arrival (compare
Figures 17 and 23). It is simply due to the strongest discontinu-
ities of the ray parameters maps (traveltime, amplitude, etc.),
when using the strongest arrival (Lambaré et al., 1996). On
such maps, linear interpolations have more severe effects than
on the smoother maps of first arrival and thus may be very bad
approximations. In compensation, interpolations allow us to
pragmatically smooth the singularities predicted by ray theory
at caustics.

Despite these limitations, we must recognize that using the
strongest arrival with interpolations yields better results than
the first arrival.

COMPUTING TIME

We can now compare our computing time with those ob-
tained with other prestack depth migration codes. Keep in
mind that on a Sun SPARC20 worstation, 10 minutes of com-
puting time was required to migrate the structurally simple
real data set (398 shots with 120 groups of receivers and a grid of

FIG. 20. Residual section between the strongest arrival (Figure 19) and the first arrival migrated sections
(Figure 14).

FIG. 21. Comparison among 1-D depth sections (x = 200 m)
of relative impedance perturbation extracted from exact per-
turbation Marmousi model (Figure 13), from the strongest ar-
rival (Figure 18), and from the first arrival migrated sections
(Figure 12).



2-D Ray+Born Migration/Inversion 177

560 × 136), whereas 22 minutes was required to migrate the
whole complex Marmousi profile (240 shots with 96 receivers
and a grid of 449× 281 points).

From the literature, we list here some other computing times
for migrating the Marmousi data set. Ettrich and Gajewsky
(1996), reported 4 hours on a CONVEX C210 using a preserved
amplitude Kirchhoff migration code using either the first or the
strongest arrivals. Results were interesting and demonstrated
the higher quality imaging achieved using the strongest arrival.
However, no precise quantitative evaluation of the result with
the exact model was proposed.

Using a common-offset wave-equation migration, Ehinger
et al. (1996) reported a computing time of 40 minutes and a
memory requirement of 35 Mwords on a Fujitsu VP2400 com-
puter. The image was excellent even in the hydrocarbon trap,
and wave-equation migration is considered by many as the fa-
vorite method for imaging complex structures. Unfortunately,
the numerical extension of the method to three dimensions re-
mains difficult with current technology, whereas 3-D preserved
amplitude ray+Born and Kirchhoff migration codes have al-
ready been applied on real data sets (Thierry et al., 1996, 1999;

FIG. 22. Strongest arrival migrated section of Marmousi data set computed without CPU-efficient interpolations.
The clip was fixed to 0.05 (about a tenth of the maximum value).

FIG. 23. Residual section between the strongest arrival sections computed without and with CPU-efficient inter-
polations (Figures 22 and 19, respectively). The clip was fixed to 0.05 (about a tenth of the maximum value of the
migrated sections.). The energy [see expression (16)] of the residual section is 8.77% of the energy of the section
obtained without interpolations (Figure 22).

Operto et al., 1997; Tura et al., 1997). Moreover, wave-equation
migration is not a migration/inversion approach and, conse-
quently, it does not provide a reliable quantitative estimation
of the reflectivity or of the model perturbation. On the contrary,
preserved amplitude ray+Born or Kirchhoff migration can be
used for efficient amplitude variation with offset migration.

CONCLUSION

We showed that real sized 2-D and 2.5-D ray+Born migra-
tion/inversion can be done on standard workstations in a rel-
atively short computing time (about 20 minutes), equivalent
to the computing time obtained for standard industrial 2-D
prestack depth migrations on supercomputers (Ehinger et al.,
1996). The 2-D migration/inversion code appears robust, and
the traditional instabilities of ray tracing codes are now over-
come with the introduction of the wavefront construction
method (Vinje et al., 1993a) associated with the uniform ray
density criterion (Lambaré et al., 1996).

The power of the method in terms of quantitative imaging
has also been demonstrated. Preserved amplitude migrated
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sections were computed and plotted without any gain cor-
rection, and comparisons with exact models, when available,
revealed quite good agreement. In the case of a complex model,
taking into account the strongest arrival yields the best images.
However, the quality and the amplitude of the migrated section
remain poorer in zones of triplications. Using all the arrivals
should improve the result, but it is not clear if we could avoid
the introduction of globally valid asymptotic Green’s functions
as Gaussian beams or Maslov summations to overcome the ar-
tifacts of standard ray theory at caustics.

CPU efficiency is very promising for improving velocity
analysis by methods such as CRP focusing gathers (Jin and
Madariaga, 1993, 1994), which is a very expensive task. Con-
cerning the extension to three dimensions, our 2-D code
has fullfilled its role as testing platform because a fast 3-D
ray+Born migration/inversion code has already been devel-
oped and applied to real data on a workstation (Thierry et al.,
1996, 1999; Operto et al., 1997).
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Ph.D. thesis, Université Paris IX Dauphine.
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de vitesse pour l’imagerie sismique: Ph.D. thesis, Université Paris VII.
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APPENDIX A

RAY+BORN APPROXIMATION

In this section, we develop a solution of the linearized for-
ward problem using asymptotic Green’s functions and the Born
approximation.

Consider the scalar wave equation. The Green’s function
G0(x, t; s) (s denotes source position, x receiver position, and t
the time) is solution of(

1
c2

0(x)
∂2

∂t2
−∇2

)
G0(x, t; s) = δ (x− s)δ(t), (A-1)

where c0(x) is the wave propagation velocity. It satisfies a reci-
procity property G0(x, t; s) = G0(s, t; x).

Ray theory gives a high-frequency asymptotic approxima-
tion of the Green’s function (Červený et al., 1977). In the fre-
quency domain,

G0(x, ω; s) = S(ω)
N(x,s)∑
n=1

An(x, s) eiωTn(x,s)−i π2 sign(ω)αn(x,s)
,

(A-2)

where n denotes the number of the ray branch, N the total
number of ray branches, A the amplitude, T the traveltime, S
the Green’s function dimensional signature, ω the angular fre-
quency, and α the KMAH index (Chapman, 1985). Our con-
ventions for the Fourier transform are

f (ω) =
∫ +∞
−∞

dt f (t) eiωt and

(A-3)

f (t) = 1
2π

∫ +∞
−∞

dω f (ω) e−iωt .

In the 2-D case, Sand A are expressed as

S2-D(ω) = 1√−iω
and

(A-4)

A2-D(x, s) =
√

c0(x)
8π J2-D(x, s)

,

where J2-D(r, s) denotes the 2-D geometrical spreading asso-
ciated with the 2-D asymptotic Green’s functions

J2-D(x, s) = ∂L(x)
∂φ(s)

, (A-5)

where ∂L(r) is the length of the elementary orthogonal cross-
section of the ray tube in two dimensions, and ∂φ(s) the asso-
ciated initial elementary angular aperture. All the parameters
involved in the asymptotic Green’s function (A-2) may be es-
timated along rays by the integration of ordinary differential
equations.

The Born approximation is a linear approximation of the
relation connecting the data G to the model c(x). Consider a
perturbation δm(x) of the reference squared slowness model,
1/c2

0(x), and the associated perturbation of data, δG. The first-
order Born approximation yields

δG(r, ω; s) = ω2
∫

dx δm(x)G0(r, ω; x)G0(x, ω; s).

(A-6)

Introducing the asymptotic Green’s functions (A-2) in
the Born approximation (A-6) provides the ray+Born approx-
imation

δG(r, ω; s) = K(ω)
∫

dx δm(x)

×
N∑

n=1

L∑
`=1

An`(r, x, s) eiωTn`(r,x,s), (A-7)

where

A2-D
n` (r, x, s) = An(r, x)A`(x, s)

Tn`(r, x, s) = Tn(r, x)+ T̀ (x, s)

− π
2

sign (ω)
ω

(αn(r, x)+ α`(x, s))

K2-D(ω) = iω

.

(A-8)

K,A, and T denote the signature, the amplitude, and the phase
of the Born operator associated with the ray branches n and
` of the Green’s function of the source and the receiver, res-
pectively.
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The 2.5-D case (3-D in plane propagation for a crossline-
invariant 3-D model) can be seen as a variation of the
2-D formula. It can be obtained from the 3-D ray+Born ex-
pression by approximating the integral along the invariant di-
rection y with the stationary phase approximation (Bleistein,
1987),

δG2.5-D(r, ω; s)
∣∣
(y=0) = K2.5-D(ω)

×
∫

(y=0)
dx δm(x)

N(r,x)∑
n=1

L(x,s)∑
`=1

A2.5-D
n` (r, x, s) eiωTn`(r,x,s),

(A-9)

with


A2.5-D

n` (r, x, s) = A2-D
n` (r, x, s)√

2π(τn(r, x)+τ l (x, s))

K2.5-D(ω) = 1√−iω
ω2

, (A-10)

where τ is the parameter estimated along the ray by integrating
dτ = dT c2

0(x).

APPENDIX B

ASYMPTOTIC DIAGONALIZATION OF HESSIAN

Consider the expression of the Hessian matrix [equation (6)].
Let us first introduce Beylkin’s approximations. In the context
of high-frequency asymptotic approximations, only stationary
phase contributions are important. The leading terms of the
high-frequency asymptotic approximation of the Hessian only
depend on the neighborhood of the fixed point x0 (ten Kroode
et al., 1994). Asymptotically, the following approximations can
be done,


D(r, x, x0, s, ω) ≈ D(r, x0, x0, s, ω)

ω1T (r, x, x0, s,ω) ≈ ω∇x0T (r, x0, s) · (x− x0),

= k · (x− x0)
(B-1)

where we define the vectors k and q,

k = ωq and q = ∇x0T (r, x0, s) = pr + ps, (B-2)

where pr = ∇x0 T(x0, r) and ps = ∇x0 T(x0, s) are the slowness
vectors in x0 for the rays [r→ x0] and [s→ x0] (see Figure 1).

We then transform the discrete summation in the Hessian
(6) into an integral and change the parameters of integration
from s, r andω to2 and k, where2 is the angle between vectors
pr and ps (Figure 1),

B†QB(x, x0)

=
∑

s

∑
r

∑
Ä

QD(r, x, x0, s, ω) e−iω1T (r,x,x0,s) (B-3)

≈
∫

ds
∫

dr
∫

dω
QD(r, x0, x0, s, ω)

1s1r1ω
e−i k·(x−x0)

(B-4)

≈
∫

d2
1

(2π)2

∫∫
dkP(s, r, ω, x0) e−i k·(x−x0), (B-5)

where 1s and 1r denote the shot and receiver step along the
line, 1ω is the sampling step for the angular frequency, and

P(s, r, ω, x0) = QD(r, x0, x0, s, ω)(2π)2

1s1r1ω

×
∣∣∣∣∂(s, r, ω)
∂(k,2)

∣∣∣∣. (B-6)

Expression (B-5) must be compared to equation (8) and, fol-
lowing Jin et al. (1992), we chooseQ as a local weight depend-
ing on the imaged point x0 in the model in such a way that
P(s, r, ω, x0) = 1, which imposes that

Q(s, r, ω, x0) = 1s1r1ω
(2π)2D(r, x0, x0, s, ω)

∣∣∣∣ ∂(k,2)
∂(s, r, ω)

∣∣∣∣.
(B-7)

Introducing expression (B-7) in equation (B-5) gives for the
Hessian

B†QB(x, x0) ≈
∫

d2
1

(2π)2

∫∫
dk e−i k·(x−x0)

≈ [2]max
min δ(x− x0). (B-8)

Here, [2]max
min denotes the gap between the maximum and

minimum value of 2 obtained by considering the set of rays
s → x0 and r → x0 for all the traces. The Hessian matrix has
now been approximately diagonalized and thus can be inverted
easily.
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APPENDIX C

DERIVATION OF THE JACOBIAN

In this appendix, we prove equation (15):∣∣∣∣ ∂(k,2)
∂(s, r, ω)

∣∣∣∣ = |ω||q|2∣∣∣∣∂(8s)
∂(s)

∣∣∣∣∣∣∣∣∂(8r)
∂(r)

∣∣∣∣. (C-1)

Let us remember that k = ωq = ω(ps + pr ) and that 8s

and 8r are, respectively, the angles associated with the slow-
ness vectors ps and pr (Figure 1). This result can be obtained
using a polar representation for vector k, k→ (|k|,8), where
8 = (8s +8r)/2. We get

∣∣∣∣ ∂(k,2)
∂(s, r, ω)

∣∣∣∣ = ∣∣∣∣ ∂(k,2)
∂(|k|,8,2)

∣∣∣∣∣∣∣∣∂(|k|,8,2)
∂(s, r, ω)

∣∣∣∣ (C-2)

= |k|
∣∣∣∣∂(|k|,8,2)
∂(s, r, ω)

∣∣∣∣ (C-3)

= |ω||q|
∣∣∣∣∂(|k|)
∂(ω)

∣∣∣∣∣∣∣∣∂(8,2)
∂(s, r)

∣∣∣∣ (C-4)

= |ω||q|2
∣∣∣∣∂(8,2)
∂(s, r)

∣∣∣∣. (C-5)

Finally, we use 8 = (8s +8r)/2

2 = 8s −8r

(C-6)

to get ∣∣∣∣∂(8,2)
∂(s, r)

∣∣∣∣ = ∣∣∣∣ ∂(8,2)
∂(8s,8r)

∣∣∣∣∣∣∣∣∂(8s,8r)
∂(s, r)

∣∣∣∣ (C-7)

=
∣∣∣∣∂(8s)
∂(s)

∣∣∣∣∣∣∣∣∂(8r)
∂(r)

∣∣∣∣ (C-8)

and to prove equation (15).


